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Abstract

This work addresses the estimation and calculation of theoperating pointof a network’s link in a digital traffic
network. The notion of operating point comes from effective bandwidth (EB) theory. The results shown are valid
for a wide range of traffic types. We show that, given a good EB estimator, the operating point, i.e. the values of time
and space parameters in which the EB is related with the asymptotic overflow probability, can also be accurately
estimated. This means that the operating point (and other parameters) inherits the statistical properties of the EB
estimation. This affirmation is not an obvious one, because operating point parameters are related with the EB
through an implicit function involving extremal conditions computations.

Imposing some regularity conditions, a consistent estimator and confidence regions for the operating point and
Quality of Service parameters are developed. These conditions are very general, and they are met by commonly
used estimators as the averaging estimator presented in [C. Courcoubetis, R. Weber, Buffer overflow asymptotics
for a switch handling many traffic sources, J. Appl. Probability 33 (1996)] or the Markov Fluid model estimator
presented in [J. Pechiar, G. Perera, M. Simon, Effective bandwidth estimation and testing for Markov sources,
Perform. Eval. 48 (2002) 157–175].

Using a software package developed by our group that estimates the EB and other relevant parameters from traffic
traces, simulation results are compared with the analytical results, showing very good fitting.
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1. Introduction

The usage of digital networks for carrying variable bit rate (VBR) and real time (RT) or time sensitive
services is growing. New control mechanisms and protocols are added to existing data oriented networks
to give an appropriate support to such services. The state of the art in traffic engineering is briefly described
in Section 2.

Resource sharing in these networks is absolutely needed for an economic usage. This issue leads to the
problem of estimating the resources needed for guaranteed VBR communications, which cannot be the
peak rate nor the mean rate. Indeed, the mean rate would be a too optimistic estimation, that would cause
frequent losses. On the other side, the peak rate would be too pessimistic and would lead to resource
waste.
Effective bandwidth(EB) defined by F. Kelly in[7] is an useful and appropriate measure of channel

occupancy. The EB is defined as follows:

α(s, t) = 1

st
logE(esXt ), 0 < s, t < ∞.

whereXt is the total amount of work arriving from a source in the time interval [0, t], which is supposed
to be a stochastic process with stationary increments.α(s, t) lies between the mean rate (fors → 0) and
the peak rate (fors → ∞) of the input process.

Parameterss and t are referred to as the space and time parameters, respectively. These parameters
depend not only on the source itself, but on the context on which this source is involved. More specifically,
s andt depend on the capacity, buffer size, scheduling policy of the multiplexer, the QoS parameter to
be achieved and the actual traffic mix (i.e. characteristics and number of other sources). The EB concept
can be applied to sources or to aggregated traffic, as we find in a network’s core link.

Under themany sources asymptotic regimediscussed in[3], where it is assumed that the link capacity
and buffer size increase proportionally to the number of incoming sources, the EB is related with the
stationary buffer overflow probability by the so calledinf supformula:

Γ = inf
t≥0

sup
s≥0

((B + Ct)s − Nstα(s, t)),

whereC is the link capacity,B is its buffer size andN the number of incoming multiplexed sources
of effective bandwidthα(s, t). If QN represents the stationary amount of work in the queue, the buffer
overflow probability or loss probability is approximately given by

logP(QN > B) ≈ −Γ

as shown in[3] and[16].
We calls∗ andt∗ to the values of parameterss andt in which theinf supis attained. These valuess∗

andt∗ are called the link’soperating point. A good estimation ofs∗ andt∗ is useful for network design
and routing procedures.

The technical relevance of the issue is pointed out inSection 2, where we briefly present the traffic engi-
neering in Multiprotocol Label Switching (MPLS) networks. We point out the need of a good estimation
of the bandwidth in order to optimise resource sharing.
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In Section 3we summarise the different equivalent bandwidth approaches to network performance
estimation.

In Section 4we show how the operating point of a link can be estimated, the consistency of this
estimation and its confidence interval.

Our group has developed a software package that estimates the EB from general traffic traces, calculates
it when an explicit model is given, estimates the values ofs∗ andt∗ and deduces then the overflow or loss
probability and other relevant design parameters like buffer size and link capacity. Using this tool EB and
operating point of several traces were obtained, and their dispersion was estimated. Analytical results are
compared with numerical data inSection 5.

In Section 6we present several conclusions and indicate ways for further work.

2. Motivation

Convergence of the different telecommunications services on a unique network is an already old
aspiration. Integrated Service Digital Network (ISDN) has been a goal for the Telecommunications
community from long time ago. General functionalities for broadband networks were defined, as in
[5] or [6]. Nevertheless, many candidates have failed to implement such integrated network. However,
the research and proposals lead to some basic design principles and measurement methods that prevail
and apply to the new proposals. One of the most important of them, which is a central point in this
work, is the concept of Quality of Service (QoS), and how to define, establish and guarantee a QoS
level.

Currently, the most promising approach to an integrated service network are the already old IP networks.
And maybe the most attractive new service to be given is voice, the most traditional telecommunication
service. But in this case, the service and the network come from different worlds. In fact, services as voice
are often given on IP platforms, but without any guarantee of quality. This is because plain IP networks
are based in a “best effort” policy, well suited for data but not for time sensitive applications. In order
to support variable bit rate (VBR) and time sensitive services, the concept of QoS must be implemented
over IP.

The first serious approach was the IntServ (Integrated Services) model. This model proposed access
control for each individual flow, and resource reservation along the full path across the network. The
drawback is the lack of scalability; the model cannot be applied in the Internet core, where the number
of individual flows grows high.

During the last years, the most promising architecture proposal is Differentiated Services (DiffServ).
This model goes around the scalability problems of IntServ by working with aggregate flows. Data packets
are classified, and each node manages each class according to appropriate policies.

However, the DiffServ model does not guarantee by itself QoS on the Internet. Traffic Engineering
is also needed. Some authors as[10], have proposed architectures integrating DiffServ and admission
control at the network edges based on traffic classes.

More recently, the MPLS architecture appeared as an appropriate technology where the DiffServ
model can be implemented. This architecture incorporates traffic engineering through explicit routing
establishing tunnels named label switched paths (LSPs). MPLS also introduces the notion of forwarding
equivalence class (FEC), giving the network operator the possibility of partitioning the traffic in aggregated
flows according to the service model.
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Using MPLS, the network operator can establish for each FEC one or more LSPs. But, given a LSPs
configuration defined by the operator: is it possible to ensure the service level required? And if it is not
possible: how can the operator use traffic engineering to give the required QoS for each aggregated flow?

The main goal of this work is to give some theoretical insight about traffic engineering in MPLS,
and develop a practical tool for network design and performance optimisation topics. We are especially
interested in traffic engineering methodologies based on statistical characterisation of different flows.

In this framework, overflow probability estimation is a key topic, which leads to the notion of an
“equivalent” bandwidth required by the aggregated flows.

3. Equivalent Bandwidth applications in network analysis

The notion of equivalent bandwidth was formerly used to study the access control of some networks,
for instance ATM networks. Many contributions following this approach were done during the 1990s to
analyse the access control in some networks based on the IntServ model. In that situation, the access
node receives a connection request and has to estimate the resources it requires, in order to allow or deny
the new connection. Kelly’s Effective Bandwidth (EB) may be used in such situations as the “equivalent
capacity” needed by the new connection. In this context, the flow to be statistically characterised is an
individual flow, and may be directly related with the data source (for instance voice or video codes).

The situation of access node-individual flows was studied using the so calledlarge buffer asymptotics,
in which we take an infinite buffer and study its filling above some large threshold. This approach cannot
be used in backbone nodes, where buffers are devised to resolve simultaneous packet arrival, but not to
store bursts, and they are consequently small.

The application of large deviations theory to the analysis of the MPLS backbone must be performed
on the basis of themany sources asymptotic. In this regime we take buffer sizeB = Nb (N being the
number of sources) and output capacityC = Nc and makeNgo to infinity. Results about loss probability
and delay in this regime can be found in[3,16,15]. Recently, a different asymptotic with many sources
and small buffer characteristics was proposed in[11]. In all these works, EB is related with the relevant
QoS parameters through the notion of operating point of the link as mentioned in 1. Estimating the EB
and QoS accordingly is the main goal of the next section.

Depending on technical possibilities, these estimations can be used for off-line design, admission
control (at the LSP aggregated level) or even for routing. These applications are successively more
demanding in computing capacity of the switches. At present time we focus primarily on design issues.

Even though this work was motivated by MPLS traffic engineering, its results are useful for a general
network that handles VBR communications and has to provide a fixed or at least consistent QoS. It is
valid more generally, for problems of limited resource sharing in which some guarantees of loss and delay
are intended to be met.

4. Estimation

Estimating the operating point of a link, as defined inSection 1is closely related with its defining
equation which we rewrite here on aper sourcebasis:

γ = inf
t≥0

sup
s≥0

((b + ct)s − stα(s, t)) (4.1)
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whereγ is the asymptotic decay rate of the overflow probability as the number of sources increases,c
andb are the link’s capacity and buffer sizeper sourceandα(s, t) the effective bandwidth function of the
incoming traffic, also defined inSection 1:

α(s, t) = 1

st
logE(esXt ), 0 < s, t < ∞. (4.2)

With the present notation, stationary overflow probability in a switch multiplexingN sources, having
capacityC = Nc and buffer sizeB = Nb verifies

lim
N→∞

1

N
logP (QN > B) = −γ. (4.3)

In general, the effective bandwidth functionα(s, t) is unknown, and shall be estimated from measured
traffic traces. The problem is how to estimate the moment generating functionΛ(s, t) = E(esXt ) of the
incoming traffic processXt for eachsandt.

Different approaches have been presented to solve this problem. One of them, presented in[2] and[13]
is to estimate the expectationE(esXt ) as the time average given by

Λn(s, t) = 1

n

n∑
k=1

es(Xkt−X(k−1)t) (4.4)

which is valid if the process increments are stationary and satisfy any weak dependence hypothesis that
guarantees ergodicity. To estimateΛ(s, t) a traffic trace of lengthT = nt is needed. We can construct an
appropriate estimator of the EB asαn(s, t) = 1

st
log(Λn(s, t)).

When a model is available for incoming traffic, a parametric approach can be taken. In the case of a
Markov Fluid model, i.e. when the incoming process is modulated by a continuous time Markov chain
which dictates the rate of incoming work, explicit computation can be made as shown by Kesidis et al. in
[8]. In this case, an explicit formula is given forΛ(s, t) andα(s, t) in terms of the infinitesimal generator or
Q-matrix of the Markov chain. In a previous work of our group[12], and based on the maximum likelihood
estimators of theQ-matrix parameters presented in[9], an EB estimator and confidence intervals are
developed.

Having an estimator of the functionα(s, t), it seems natural to estimateγ, and the operating points∗, t∗

substituting the functionα(s, t) by αn(s, t) in Eq. (4.1) and solving the remaining optimisation problem.
The output would be some values ofγn, s∗n andt∗n, and the question is under what conditions these values
are good estimators of the realγ, s∗ andt∗.

Therefore, we may discuss two different problems concerning estimation. The first one is, given a
“good” estimatorαn(s, t) of α(s, t), find sufficient conditions under which the estimatorss∗n, t

∗
n andγ∗

n

obtained by solving the optimisation problem:

γn = inf
t≥0

sup
s≥0

((b + ct)s − stαn(s, t)) (4.5)

are “good” estimators of the operating points∗, t∗ and the overflow probability decay rateγ of a link. This
affirmation is not an obvious result becauses∗ andt∗ are found from a non linear and implicit function.
We remark that the reasoning applied tos∗ andt∗ can be also applied to other parameters that are deduced
from the EB. Further in the article the parametersB andC are also studied.

The second problem is finding this good estimator of the EB and determining whether the conditions
are met, so that the operating point can be estimated usingEq. (4.5).
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The remaining part of the section addresses the first problem, where a complete answer concerning
consistency and Central Limit Theorem (CLT) properties of estimators is given bytheorem 1, based on
regularity conditions of the EB function. At the end of the section we discuss the validity of the theorem
for some known estimators and inSection 5we compare our analytical results with numerical ones.

Let us define

g(s, t) = s(b + ct) − stα(s, t)

which can be rewritten in terms ofΛ(s, t) = E(esXt ) as

g(s, t) = s(b + ct) − log(Λ(s, t))

Then we have that (∂/∂s)g(s, t) = 0 if and only if

∂

∂s
g(s, t) = b + ct − ∂/∂sΛ(s, t)

Λ(s, t)
= 0 (4.6)

Assuming that for eacht there existss(t) such that

∂

∂s
g(s(t), t) = 0,

it is easy to show that sups≥0 g(s, t) = g(s(t), t) becauseg(s, t) is convex as a function ofs. In that case,
γ = inf t≥0 g(s(t), t), and

∂

∂t
g(s(t), t) = ∂

∂s
g(s(t), t)ṡ(t) + ∂

∂t
g(s, t)

∣∣∣∣
s=s(t)

.

If there existst∗ such that

∂

∂t
g(s(t∗), t∗) = 0

and the infimum is attained, it follows that

γ = g(s(t∗), t∗).

If we defines∗ = s(t∗), we have thatγ = g(s∗, t∗) where

∂

∂s
g(s∗, t∗) ṡ(t∗) + ∂

∂t
g(s∗, t∗) = 0,

∂

∂s
g(s∗, t∗) = 0



L. Aspirot et al. / Performance Evaluation 59 (2005) 103–120 109

and then we have the relations
∂

∂s
g(s∗, t∗) = ∂

∂t
g(s∗, t∗) = 0 (4.7)

Since
∂

∂t
g(s, t) = cs − (∂/∂t)Λ(s, t)

Λ(s, t)
, (4.8)

it follows from (4.6), (4.7) and (4.8) that the operating point must satisfy the equations:

b + ct∗ − (∂/∂s)Λ(s∗, t∗)

Λ(s∗, t∗)
= 0, (4.9a)

cs∗ − (∂/∂t)Λ(s∗, t∗)

Λ(s∗, t∗)
= 0. (4.9b)

If we make the additional assumptions that interchanging the order of the differential and expectation
operators is valid, and thatẊt exists for almost everyt we can write

∂

∂s
Λ(s, t) = E(Xte

sXt ),
∂

∂t
Λ(s, t) = E(sẊte

sXt ) (4.10)

Replacing the expressions of (4.10) in Eqs. (4.9) we deduce an alternative expression for the solutionss∗

andt∗:

b + ct∗ − E(Xt∗es
∗Xt∗ )

E(es∗Xt∗ )
= 0, (4.11a)

cs∗ − E(s∗Ẋt∗es
∗Xt∗ )

E(es∗Xt∗ )
= 0. (4.11b)

Therefore, we can reformulate the optimisation problem presented in (4.1). The operating point of the
link can be calculated solving the system of equations (4.9a), or (4.10) if the additional assumptions are
valid. The first formulation, which is more general, is the one used in the main result of this work, which
follows:

Theorem 1. If Λn(s, t) is an estimator ofΛ(s, t) such that both areC1 functions and

Λn(s, t)−→
n

Λ(s, t), (4.12a)

∂

∂s
Λn(s, t)−→

n

∂

∂s
Λ(s, t), (4.12b)

∂

∂t
Λn(s, t)−→

n

∂

∂t
Λ(s, t) (4.12c)

almost surely and uniformly over bounded intervals, and if we denotes∗n andt
∗
n the solutions of

b + ct∗n − (∂/∂s)Λn(s∗n, t
∗
n)

Λn(s∗n, t∗n)
= 0, (4.13a)

cs∗n − (∂/∂t)Λn(s∗n, t
∗
n)

Λn(s∗n, t∗n)
= 0, (4.13b)
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then(s∗n, t
∗
n) are consistent estimators of(s∗, t∗). Moreover, if a functional Central Limit Theorem (CLT)

applies toΛn − Λ, i.e.,

√
n(Λn(s, t) − Λ(s, t))

w=⇒
n

G(s, t),

whereG(s, t) is a continuous Gaussian process, then

√
n((s∗n, t

∗
n) − (s, t))

w=⇒
n

N(�0,Σ), (4.14)

whereN(�0,Σ) is a centered bivariate normal distribution with covariance matrixΣ.

Proof. FromEq. (4.9a), we know that (s∗, t∗) is the solution of the equation

K((s, t),Λ) = �0,

where

K((s, t),Λ) =



b + ct − (∂/∂s)Λ(s, t)

Λ(s, t)

cs − (∂/∂t)Λ(s, t)

Λ(s, t)


 (4.15)

and (s∗n, t
∗
n) is the solution ofK((sn, tn),Λn) = �0.

Recall that ifE, F are normed spaces (or more in general semi-normed spaces),f : E → F is said
to be differentiable ate ∈ E if there exists a continuous linear mapdf (e) : E → F such that for anye′ in
a neighborhood atewe have that

f (e′) = f (e) + df (e)(e′ − e) + o(‖e′ − e‖) (4.16)

Let also recall that ifE1, E2, F are normed spaces andf : E1 × E2 → F is differentiable so are,
for anye1 ∈ E1 ande2 ∈ E2, fe1 : E2 → F defined byfe1(e2) = f (e1, e2) endf e2 : E1 → F defined by
f e2(e1) = f (e1, e2).

Finally, let us recall the general form of the implicit function derivative formula. Iff is differentiable,
and for eache2 ∈ E2 there exists an unique elementv(e2) ofE1 such thatf (v(e2), e2) = �0 anddf e2 (v(e2))
is invertible, then

df e2 (v(e2)) dv(e2) + dfv(e2) (e2) = 0,

or equivalently

dv(e2) = − (df e2 (v(e2)))−1
dfv(e2)(e2) (4.17)

We will apply (4.17) toE1 = (R+)2 equipped with the Euclidean norm and

E2 = {f : (R+)2 → R of classC1}
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equipped with the seminorm

‖f‖ =
∞∑
n=1

1

2n

( ‖f‖n
1 + ‖f‖n

)
,

where‖f‖n is the Sobolev-type norm

sup

{
|f (s, t)| +

∣∣∣∣ ∂∂sf (s, t)

∣∣∣∣+
∣∣∣∣ ∂∂t f (s, t)

∣∣∣∣ : (s, t) ∈ [0, n]2

}
.

It is easy to check that, for a sequence{fm} of functions ofE2, ‖fm‖ → 0 whenm → ∞ if and only if
fm → 0, (∂/∂s)fm → 0, (∂/∂t)fm → 0 uniformly over bounded intervals whenm → ∞.

Applying the preceding paragraph, we may think of (s∗, t∗) as (s, t)(Λ) = v(Λ) and by (4.17)

dv(Λ) = −(dKΛ(v(Λ)))−1dKv(Λ)(Λ).

Therefore, since (s∗n, t
∗
n) = v(Λn),

(s∗n, t
∗
n) − (s, t) = v(Λn) − v(Λ) = dv(Λ)(Λn − Λ) + o(‖Λn − Λ‖). (4.18)

But the hypotheses of the theorem imply that‖Λn − Λ‖ −→n 0 a.s. and dv(Λ) is continuous, therefore:

(s∗n, t
∗
n)−→

n
(s∗, t∗) a.s.

showing consistency.
If in addition, a functional CLT applies toΛn − Λ, i.e.,

√
n(Λn(s, t) − Λ(s, t))

w=⇒
n

G(s, t),

whereG(s, t) is aC1 Gaussian process, we have that

√
n((s∗n, t

∗
n) − (s, t)) = dv(Λ)(

√
n(Λn − Λ)) + o(

√
n‖Λn − Λ‖).

Since
√
n‖Λn − Λ‖=⇒w

n ‖G‖, it is bounded in probability and, therefore,

o(
√
n‖Λn − Λ‖)

(p)−→
n

0.

On the other hand, since dv(Λ) is continuous, we have that

√
n dv(Λ)(Λn − Λ)

w=⇒
n

dv(Λ)(G).

Therefore, we have finally shown that

√
n((s∗n, t

∗
n) − (s, t))

w=⇒
n

dv(Λ)(G)
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which, being dv(Λ) a linear transformation intoR2, implies that dv(Λ)(G) is a normalN(�0,Σ) bivariate
random variable, whereΣ may be computed in terms of the covariances ofG and the transformation
dv(Λ). �

Remark 1. The method used in the precedent proof is commonly known as theδ-method. It is utilised
to obtain CLT results for differentiable functionals of asymptotically Gaussian processes. An appropriate
topology must be chosen in order to guarantee differentiability. Not every functional of an asymptotically
gaussian process is asymptotically gaussian. Consider for instance a sequence of boundediid random
variables andFn its empirical distribution sequence. Then,

√
n(Fn − F ) is asymptotically a gaussian

process on the real line, but
√
n(T (Fn) − T (F )) is not gaussian whenT (F ) = xF = inf {t : F (t) = 1}.

Indeed, the asymptotic distribution ofxF is a max-stable distribution.

Remark 2. As can be seen from the proof, computation ofΣ may not be trivial. However, if replication
is possible (for instance by taking large traces of weak-dependent signals), the previous result allows the
estimation ofΣ in terms of empirical covariances. Arguments of this type are used inSection 5.

Remark 3. The above theorem was stated for the operating point. However, if we defineγn by

γn = s∗n(b + ct∗n) − Λn(s
∗
n, t

∗
n),

we have thatγ = F (s∗, t∗,Λ) where F is a differentiable function, andγn = F (s∗n, t
∗
n,Λn) =

F (v(Λn),Λn). Therefore, if the estimatorΛn verifies a functional CLT we have forγn
√
n(γn − γ)

w=⇒
n

N(0, σ2).

Moreover, in a many sources environment, expressions for the buffer sizeband the link capacitycobtained
by Courcoubetis[2] are similar to theinf supequation. Therefore, the reasoning used in the previous
theorem extends consistency and CLT results tob∗ andc∗. Also, confidence intervals for these design
parameters can be constructed in this way as studied inSection 5.

We address now the second question posed at the beginning of the section. As we can see, for the validity
of theorem 1it is necessary that the estimatorΛn(s, t) converge uniformly to the moment generating
function over bounded intervals, as well as its partial derivatives. These conditions are reasonably general,
and it can be verified that they are met by the estimator (4.4) presented in[2] and[13], and by the estimator
for Markov Fluid sources presented in[12]. In both cases a CLT can be obtained so the CLT conclusion
of the theorem is also valid. It should be noticed that a consistent but non-smooth estimator can be used
with this procedure, if it is previously regularized by convolution with a suitable kernel.

5. Simulation and numerical results

5.1. Introduction

As written before, in the many sources regime the loss probability could be estimated from the solution
of the inf supformula (4.1). To solve this equation a double optimisation (in time and space parameters)
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is needed, in order to obtain the link operating point (s∗, t∗). The first problem is that in real cases, when
is not assumed a model for the source, there is not an explicit formula for the EB. In the general case
the information available is from traffic traces, and the equation (4.1) must be solved in terms ofαn(s, t)
(an EB estimator) instead ofα(s, t). From the previous section we know that the link operating point
estimation obtained from a good estimationαn(s, t) is consistent and has CLT properties. In this work
we carry out the analysis with simulated traces from a known theoretical model in order to evaluate our
results. In the what follows we explain the model and the EB estimation. After that an estimator of the
link operating point will be obtained, and it will be used to calculate the QoS parameters and some link
design parameters.

5.2. EB estimation

To validate the results obtained in the previous section, we simulated traffic using a two state (ON-
OFF) Markov Fluid model. In that model, a continuous time Markov chain drives the process. When
the chain is in the ON state, the workload is produced at constant rateh0, and when it is in the OFF
state no workload is produced (h1 = 0). Denoting byQ the Markov chain infinitesimal generator, by�π,
its invariant distribution, and byH, the diagonal matrix with the rateshi in the diagonal. The effective
bandwidth for a source of this type is[8,7]:

α(s, t) = 1

st
log{�π exp[(Q + Hs)t]�1}, (5.19)

where�1 is a column vector of ones.
In our simulations we generated 300 traffic traces of lengthT samples, with the followingQ-matrix:

Q =
(−0.02 0.02

0.1 −0.1

)

The effective bandwidth for this process calculated throughEq. (5.19) is shown inFig. 1.
For each traffic trace we estimated EB using the following procedure. We divided the trace in blocks

of lengtht and constructed the following sequence:

X̃k =
kt∑

i=(k−1)t

x(i), 1 ≤ k ≤ �T/t�,

wherex(i) is the amount of traffic arrived between samples and�c� denotes the largest integer less than
or equal toc.

EB can then be estimated by the time average proposed in[2,13] as

αn(s, t) = 1

st
log


 1

�T/t�
�T/t�∑
j=1

esX̃j


 , (5.20)

wheren = �T/t�. This is merely an implementation of the time average estimator inEq. (4.4) based
on a finite length traffic trace. When the values oft verify that t � T , the number of replications of the
increment process within the trace is good enough to get a good estimation.
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Fig. 1. Effective bandwidth of a Markov fluid source.

In order to find the operating point (s∗, t∗) of the theoretical Markov model, and its estimator (s∗n, t
∗
n)

for each simulated trace, we solve theinf supoptimisation problem ofEq. (4.1). In our caseα(s, t) will be
the previous theoreticalEq. (5.19) for the Markovian source or theαn(s, t) estimated for each trace. The
numerical solution has two parts. First, for a fixedt we find thes∗(t) that maximiseg(s, t) as a function
of s. It can be shown thatstα(s, t) is a convex function ofs. This convexity property is used to solve
the previous optimisation problem, that is reduced to find the maximum difference between a convex
function and a linear function ofs, and it can be done very efficiently. After thes∗(t) is found for eacht, it
is necessary to minimise the functiong(s∗(t), t) and findt∗. For this second optimisation problem, there
are no general properties that let us make the search algorithm efficient and a linear searching strategy is
used.

One of the goals is to develop a confidence region for (s∗, t∗). We simulated 300 traces of length
100000(T ) samples and constructed, for each simulated trace indexed byi = 1, . . . , K the corresponding
estimator (s∗n(i), t

∗
n(i)). By Theorem 1the vector

√
n((s∗n, t

∗
n) − (s∗, t∗)) is asymptotically bivariate normal

with (0,0) mean and covariance matrixΣ. We estimated the matrixΣ using the empirical covariances
of the observations

{√n((s∗n(i), t
∗
n(i)) − (s∗(i), t∗(i)))}i=1,...,K

given by

ΣK = n

K




∑K
i=1

(
s∗n(i) − s∗n

)2 ∑K
i=1

(
s∗n(i) − s∗n

) (
t∗n(i) − t∗n

)
∑K

i=1

(
s∗n(i) − s∗n

) (
t∗n(i) − t∗n

) ∑K
i=1

(
t∗n(i) − t∗n

)2

 ,

wheres∗n = (1/K)
∑K

i=1 s
∗
n(i) andt∗n = (1/K)

∑K
i=1 t

∗
n(i).
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Fig. 2. Estimated operating points and confidence region.

Therefore, we can say that approximately

(s∗n, t
∗
n) ≈ N

(
(s∗, t∗),

1

n
ΣK

)

from where a levelα confidence region can be obtained as

Rα = (s∗n, t
∗
n) + At

KB(�0,√χ2
α(2))√

n

beingAK the matrix that verifiesAt
KAK = ΣK, whileB(x, r) is the ball of centerx and radiusr.

To verify our results, we calculated the theoretical operating point (s∗, t∗) and simulated another 300
traces independent of those that were used to estimateΣK. We constructed then the 95% confidence
region. If the results are right, approximately 95% of the times, (s∗, t∗) must fall inside that region, or
equivalently and easier to check, approximately 95% of the simulated (s∗n, t

∗
n) must fall inside the region

R = (s∗, t∗) + 1/
√
nAt

KB(�0,√χ2
0.05(2)). Numerical results, plotted inFig. 2, verify that the confidence

level is attained, 95.33% of the estimated values fall inside the predicted region.

5.3. QoS parameters estimation

We estimate the link operating point in order to estimate loss probability and other QoS parameters,
such as delay. In the many sources asymptotic regime, the real delay of packets that flows through a link
coincides with its virtual delay[15]. The virtual delay is the delay value obtained through the queue size.
If the link sendsC packets per unit of time and the probability of having a queue size larger thanB is q,
then the probability of having a delay higher thanB/C will be q. In this regime if we have an estimator
of the probability of having a queue size larger thanB, we have an estimator of the real delay. We will
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Fig. 3. Estimation ofγn, theoreticalγ and confidence interval.

focus on the estimation of loss probability, because the delay could be deduced from the same equation.
As was said inSection 4, if we have an EB estimator that verifies the hypotheses oftheorem 1, then

γn = inf
t

sup
s

((b + ct)s − stαn(s, t)) (5.21)

is a consistent estimator and has CLT properties. From this estimator loss probability could be approxi-
mated by

qn = Pn(QN > B) ≈ e−Nγn, (5.22)

whereQN is the queue size andN is the number of sources.Fig. 3shows the estimations ofγn for 600
simulated traces, its theoretical value and its confidence interval. Numerical results show that in this case
94.8% of the values fall in the 95% confidence interval.

5.4. Link design based on EB estimation

Previous results could be extended to link design, when some QoS requirements are given. The goal
is to know, for a certain link, the smallest buffer size when the capacityC, the input traffic traces and
the maximum loss probability desired (or the maximum delay) are given. The same reasoning could be
done in order to calculate the smallest necessary link capacity to guarantee the desired loss probability
when the same information as before is available but the buffer size is fixed. The answers to these design
problems are obtained from equations such as theinf supformula. The smallest buffer size to guarantee
loss probabilityγ is given[2] by the following equation:

Bn = sup
t

inf
s

(Gn(s, t)), (5.23)

Gn(s, t) = (Nstαn(s, t) + Nγ)

s
− Ct, (5.24)
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Fig. 4. Estimated capacity, theoretical capacity and confidence interval.

and the smallest capacity to guarantee loss probabilityγ is

Cn = sup
t

inf
s

(Kn(s, t)), (5.25)

Kn(s, t) = (Nstαn(s, t) + Nγ)

st
− B

t
. (5.26)

In Figs. 4 and 5smallest capacity and buffer size estimations are shown. For each one of the 600
simulated traces,B andC have been estimated using the previous equations. The theoretical values and
the confidence intervals are also indicated.

Fig. 5. Estimated buffer size, theoretical buffer size and confidence interval.
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Fig. 6. −γ variation vs. buffer size.

Numerical results for the capacity verify that the confidence level is attained, 95% of the estimated
values fall inside the predicted interval. Negative values of buffer size for some traces show only that no
buffer is needed to satisfy the desired QoS requirements.

Notice that buffer size has an important variation. This fact is related with the operating point of the
link under design. InFig. 6 we plot−γ versus buffer size. In this curve there are two distinguishable
zones. The first one is for low buffer sizes, where small changes in buffer size leads to important changes
in loss probability. The second one shows that to have important changes in loss probability large changes
in buffer size are needed. In our case the link is operating in the second zone. Solid and dotted curves

Fig. 7. −γ variation vs. link capacity.
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correspond to theoreticalα and estimatedαn respectively. With fixedB, γ has little variation when we
move from one of these curves to the other. However, ifγ is fixedB has large variation.

The variation ofγ with C can be studied as before. InFig. 7 this variation is shown. The curve slope
grows rapidly asC increases, and loss probability goes to zero (so−γ → −∞) whenC goes to the peak
rate. In this case the link capacity is 75% of the input traffic peak rate.γ has little variation whenC is
fixed. On the other side, ifγ is fixed,C has little variation. This fact explains the small variation ofC in
Fig. 4.

Our group has developed a software package that estimates the effective bandwidth of a source from
traffic traces by means of different estimators and finds the operating point, as well as different QoS
parameters of a link using our previous framework. The Java source code of this software is available
upon request to the authors.

6. Conclusions

We have shown that consistency and CLT properties of effective bandwidth estimators can be extended
to the operating point estimation through a natural procedure under very general hypothesis. This kind of
estimations are necessary in the analysis and design of networks that must guarantee some degree of QoS
to the traffic they carry, in order to support time sensitive services, and to optimise the resource usage.
This is an important problem in the development of modern networks, where convergence of different
services is a main goal.

We have also checked that the numerical estimations constructed by simulation fit very well with the
theoretical predictions.

Moreover, the same kind of asymptotic relations that are dealt here with, appear in the estimation of
some other QoS parameters, besides the loss probability. In particular we analyze minimum buffer size
and capacity estimation that guarantee link operating with a bounded loss probability.

We are also working in the extension of this results, as well as the software tools, to the case of a
complete network.
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